If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-15x-20=0
a = 30; b = -15; c = -20;
Δ = b2-4ac
Δ = -152-4·30·(-20)
Δ = 2625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2625}=\sqrt{25*105}=\sqrt{25}*\sqrt{105}=5\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{105}}{2*30}=\frac{15-5\sqrt{105}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{105}}{2*30}=\frac{15+5\sqrt{105}}{60} $
| 30x^2-15x-20=0 | | 15−0.5x=9 | | 14,958+k=18,010 | | 0.5x−15=9 | | -7w+4=-3(w+4)-2(w+1) | | 31/12x^2=0 | | 7x(8+2)=28 | | -5x+4=-2x+16 | | 3x-9(2)=24 | | 3x-9(2)=24 | | 3x-9(2)=24 | | -5m+9=9 | | 11={c}{2}−1−2 | | 4×+6=2x-8 | | -8=y/9+1 | | 3y/2+2y=7/4 | | 3y/2+2y=7/4 | | 4(w+8)=-64 | | 1,6x+x=180 | | 1,6x+x=180 | | 3y/2+2y=7/4 | | 4(w+8)=-64 | | 4(w+8)=-64 | | 3y/2+2y=7/4 | | 64=1-7y | | t+9=-6 | | 5=y÷2 | | 5=y÷2 | | 5=y÷2 | | 4+y=-31 | | 4+y=-31 | | 11+x/7=15 |